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Abstract 

The group of automorphisms of the Galilei group G: Aut(G) is calculated. It is shown 
that Aut(G) has the structure of a semi-direct product by G of the group ~* x ~m where 
~ is the group of reals noted multiplicatively and ~* < ~m is the subgroup of positive 
reals. 

Introduction 

There is a threefold motivation for a calculation of the group Aut(G) 
of abstract automorphisms of the Galilei group G. Firstly, one may wish 
to compare Aut(G) with the group of  automorphisms of  the Poincar6 group 
P.  Aut(P) (Michel, 1967). Secondly, one may be interested in computing 
group extensions of  an 'internal'  group by G. In this case one needs to 
know the algebraic structure of  Aut(G) to discuss the extensibility of  certain 
'Q-kernels '  (Michel, 1966). Thirdly, the result is of  course of  considerable 
interest in itself. This article will adopt the third point of  view, leaving 
possible applications to a later paper. G is of  very great interest in its own 
right (L6vy-Leblond, 1971). 

In the calculation, we shall use methods based on those used by Michel 
(1967) in his calculation of Aut(P). The present calculation, although 
longer than the latter, is simpler in essence since the more complex algebraic 
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structure of G (Whiston, 1972) imposes more conditions on any auto- 
morphism of G. 

The scheme of this paper is as follows. We first state, without proof, a 
theorem (proved by Michel (1967)) on the automorphisms of any group 
G which is a semi-direct product by a characteristic kernel, and a theorem 
on the automorphisms of the full rotation group 0(3, ~). These results are 
used in order to establish a Lemma on the structure of the automorphism 
group of the three-dimensional Euclidian group which is needed for the 
final calculation of Aut(G). 

Lemma (1) 
Suppose G = KXpQ where K is a characteristic subgroup of G, K <I] G, 

and Kis defined as a Q-module via the homomorphismp ~ Hom(Q, Aut(K)). 
Any element f ~  Aut(G) sends the element (k,q) of G into the element 
(~s(k) +/3s(q), 7s(q)) where 

(a) a s e Aut(K) 

(b) ~'s ~ Aut(Q) 
(c) ~ e Hom((K,p), (K,p o ~,)) 

(d) ]~s ~Z~o~(Q,K) 

Equation (c) means that a is a module homomorphism between the Q- 
modules (K,p) and (K,p o 7) and (d) means that fis is a one cocycle of Q 
in the Q-module (K,p o 7).? If we note that 0(3, R) % 2~2(p) • S0(3, ~) 
(where P is the parity operator and 2~z(g ) is the two-element cyclic group 
generated by (g) and S0(3, ~) is complete. 

Then an extension of Lemma (1) with Q <~ G implies 

Lemma (2) 

Aut(O(3, ~) % Int(SO(3, ~)) -~ S0(3, R) 

These first two Lemmas will be used to establish Lemma (3) below. 

Lernma (3) 
Any automorphism of the three-dimensional Euclidean group 

E(3, ~) ~ ~3 In 0(3, ~) 

(where 'n' is the natural module action of 0(3, R) on ~ )  sends the element 
(v,R) of E(3, ~) to the element: 

(3s Rs v + ks - RsRR~ 1 k s, RsRR~ l) 

t See either Michel 1966 or 1967 for an elementary exposition of the cohomology 
theory of abstract groups. 
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where 3r is a non-zero real number, kr a vector of R 3 and R: is a proper 
rotation. Equivalently 

Aut(E(3, ~)) -~ E(3, ~) X0 ~* 

where 0 e Hom(~*,Aut(E(3, ~)) is given by 0(3)(v, R) - (3v, R). 

Proof 
Certainly R 3 <~ E(3, ~) so we may use Lemma (1) to write for any 

f ~  Aut(E(3, ~)) 
f :  (v, R) ~+ (~f(v) + fir(R), ~f(R)) 

where ~f is an automorphism of R3, ~f is an automorphism of 0(3, R) and 

~f ~ Zn 1 o ),:(0(3, ~), ~3) 

By Lemma (2) Ye is the inner automorphism: 

),f: R ~-+ Re RR~ 1, Rf  e S0(3, ~) 

Therefore the condition on =e that ~: be a module homomorphism is that 

~e(Rv) = Ry RRj. 1 .e(V) for any R e 0(3, ~) 

Let I(v) denote the isotropy group of v in 0(3, R). Then the latter equation 
is 

I(~f(v)) = X(Rf v) 

But two vectors have the same little group iff they are colinear (Michel, 
1967). Consequently, the module condition gives us that 

~f(v) = 3f Rf  v 

where 3f is a non-zero real number. (Since c~f is an automorphism.) The 
calculation of/3f is also simple. We have the condition 

flf(R 1 R2) : flf(Rl) -~ Rf  R1R~-' fir(R2) 

which, together with the fact that the centre of 0(3, ~) is 7?2(P), means that 

~ f ( R )  : k f  - Rf  RR7 t k: 

where kf  = 13f(P)/2 is a vector of R 3. Consequently, we have shown that 

f :  (v, R) -+ (3f Rf v + k f  - R: RR 7 t k f, Rf  RRf  1) 

where R: e SO(3,R), 3f e R, 3f r 0 and kf  e ~3. I f  we apply the last result 
twice, the correspondencefF+ ((k f, Rf), 3f) is an isomorphism 

Aut(E(3, R)) ~ E(3, ~) Xo R* 

This is immediately applicable to the calculation of the automorphisms 
of G. 
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Theorem 
Any automorphism of  the Galilei group G sends the element ((x, t), (v, R)) 

of  G into the element 

((3 s a s R s x + ~z s k s t - ~'s Rs v + X s - Ry RR~ 1 Xs, crs t), 
(3 s R s v + k s - R s RR71 ks, R s RR71)) 

where 3s, 3jr # 0 are real numbers z s is a real number  Xs, R s are vectors 
of  R 3 and R s is a proper  rotation. Equivalently 

Aut(G) ~ Gx~,(R* x Am) 

where the action of  R* x Nm as a group of  automorphisms of  G is given by 

((x, t), (v, R)) at), k) )  

Proof 
It is clear that  R 3 • R <1 G ~ (~3 • ~) XpE(3, ~) where p e Horn(E(3, R), 

Aut(R 3 • R)) is given by 

p(v, R): ((x, t) ~ (Rx + vt, t)) 

(this follows because R 3 • R is the only four-dimensional abelian invariant 
subgroup). We may therefore apply Lemma (1) to write for  a n y f ~  Aut(G) 

f :  ((x, t), (v, R)) ~ (~s(X, 0tis(V, R), ys(V, R)) 

where )'s is an automorphism of  E(3, E), ~s is an automorphism of  E3 • 
and a module homomorph ism and/3 s is a one cocycle of  the group E(3, R) 
in the module (~3 • R, p o Ys). We first calculate ~s. It can be shown 
(Michel, 1967) that  ~s is R-linear. The module condit ion on it is: 

txf(Rx + vt, t) -~ p o Vs(v, R) (as(x, t)) 

Let  us write: 
"s :  (x, t) ~ (~l(x, t),-2(x, t)) 

Then  " l  and -2 are ~-linear maps R 3 • ~ ~ R 3, R respectively and we have 

~z(Rx + vt, t) = ~2(x, t) 

~I(Rx + vt, t) = RsRR71 cq(x, t) + (3s Rs v + k s - RsRR71 ks) ~2(x, t) 

The ~-linearity condit ion on ~-s means that  we may write 

~z(x, t) = ~2(x, 0) + c~2(0, t) - e l (x)  + r 

The homomorphism ~1 ~ H o m ~ ( ~  3, R) is the zero homomorphism.  We 
have the identity 

+ vt) =- 

which by taking R = e and v = -x / t  gives us 

r = $l(0) = 0 
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It  is clear that  42 is a vector  space i somorphism of  R onto itself. Thus we 
m a y  write 

~2(t) - t. 42(1) -- tas  (a s # 0) 

(The real number  a s is non-zero since q52 is a monomorph i sm. )  Therefore  
we may  write 

~2(X, t)  = ~2(0, t )  : (fi2(t) = O'f t, a f  ];~ 0 

knowing o~ 2 we m a y  compute  cq. For :  

0q (Rx + vt, t ) = R s RR 71 C~l(X, t ) + (3 s Rf  v + k s - R f  RR7I ks  ) as  t 

I f  we take R --- e, x = 0 we obta in  

oq(vt, t) -=- gl(Vt, 0) + ~l(0, t) = 3 fRsasV t  + c,1(0, t) 

Therefore  we obtain:  
oq(x, 0) = 3f c r sRsx  

Define ~O s E H o m ( R , ~  3) by q)s: t ~+ cq(0,t). Then ~ s  is R-linear which 
implies 

qbs(t ) -= t.qbs(1 ) - tk~ where k~ ~ R 3 

But k~ = a s k  s. For,  writing c~ l(x, t) = a s 3 fRsX + k~ t our  identity on O~l 
implies 

(O'y k s - k~) = R s R R y l ( a y  ky  - k~) VR ~ 0(3,  R) 

Taking  R = P we obtain c~yks -  k~ = 0. Consequently we have obtained 
the fo rm below for  ~f 

~ f :  (X, t) ~ (as 3f Rf  x .+- crfkf t, a s t) 

where crs and 3 s are non-zero scalars, k f  ~ R 3 and Rf  ~ S0(3,  R). I t  remains 
to compute  ils. I f  we define functions ill and/32 by 

ilf (v,R) -+ (ill(v, R),il2(v, R)) 

The cocycle condit ion on 13 yields the following indentities 

il2((Vl, R I )  (V2, R2)) = il2(Vl, R1) -~ il2(v2, R2) 

ill((Vl, R1) (v2, R2)) 
= ill (Vl, R1) -~ Rf  RR71 ill (v2, R2) -]- (~s Rf  v n t- k s - R s RR71 ks )  il2(v2, R2) 

W e  have to know t3 2 for  a calculation of  ill. I t  is clear in fact that  

/32 = 0(/32 ~ Horn(E(3,  R), ~)) 

writing 
ill(V, R) ~ ill(V, e) + ill(o, R) = pl(v) + pz(R) 
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we obtain the condition that P2 eZ~ o rs(O( 3, ~), ~3) and 9s (Rv) = R s R R ~  l • 
p(v) for any R e S O ( 3 , R ) .  We then obtain the solutions 

p2(R) = X s - R r RRTsl X I where Xf E ~3 

pl(v) = -~-s Rsv where -ry is any real number 

Therefore we obtain the following result 

]3 s : (v, R) ~+ (X s - R f  R R 7 I  Xe  _ .rs R e  v, O) 

and we may express any automorphism of G by its action 

f :  ((x, t), (v, R))  ~+ ((or s 8 s R s x + crf k s t - "r e R s v + X s - R s R R  s Xy ,  a s t) ,  

(8 s R e v + k s - R f  R R ~  I ks ,  R e RR-})) 

The correspondencef ~-~ ((xs,'re), (ks,  Rs) ,  (8 s. cry) ) is a group isomorphism: 

Aut(G) ~ GX~,(~* • Rm) 

Where o~ e Hom(~* • Rm, Aut(G)) is 

048, ~): ((x, t), (v, R)) -+ ((8~x, ~t), (By, R)) 

The canonical map InG: G ~+ Aut(G) (where In(g) the inner automorphism 
induced by g e G) is given by 

In: ((x, t), (v, R)) ~+ ((x - vt, t), (v, R), (det(R), 1)) 

Corollary (1) 
Out(G) -~ R* • Rm is a subgroup of Aut(G). 

Proof 
This is a trivial consequence of the fact that 

Aut(G) ~ GXo~(~* • R,.) 

and G/C(G) % Int(G) ~ G since C ( G )  = 1. 

Corollary (2) 
Aut(Aut(G)) ~ Aut(G). 

Proof 
This is a trivial consequence of a Lemma (Michel, 1967) that if 

Int(G) <~ Aut(G), Aut(Aut(G)) _~ Aut(G) 

But Int(G) ~ G <~ Aut(G), since it is the only invariant subgroup of Aut(G) 
isomorphic to G. 

Corollary (3) 
All abstract automorphisms of G are continuous if G has the Lie group 

topology. 
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Proof 

Trivially, from Theorem (1), describing the act ion of any au tomorphism 
of G, any au tomorphism is the product  of a dilation, a ro ta t ion  and  a 
translat ion.  Each of the const i tuent  au tomorphisms is cont inuous.  
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